Structure of solvent-free nanoparticle-organic hybrid materials.

نویسندگان

  • Hsiu-Yu Yu
  • Donald L Koch
چکیده

We derive the radial distribution function and the static structure factor for the particles in model nanoparticle-organic hybrid materials composed of nanoparticles and attached oligomeric chains in the absence of an intervening solvent. The assumption that the oligomers form an incompressible fluid of bead-chains attached to the particles that is at equilibrium for a given particle configuration allows us to apply a density functional theory for determining the equilibrium configuration of oligomers as well as the distribution function of the particles. A quasi-analytic solution is facilitated by a regular perturbation analysis valid when the oligomer radius of gyration R(g) is much greater than the particle radius a. The results show that the constraint that each particle carries its own share of the fluid attached to itself yields a static structure factor that approaches zero as the wavenumber approaches zero. This result indicates that each particle excludes exactly one other particle from its neighborhood.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering.

We investigate the static structure factor S(q) of solvent-free nanoparticle-organic hybrid materials consisting of silica nanocores and space-filling polyethylene glycol coronas using a density-functional theory and small angle X-ray scattering measurements. The theory considers a bidisperse suspension of hard spheres with different radii and tethered bead-spring oligomers with different graft...

متن کامل

Heterogeneous Copper Nanoparticle on Charcoal (Cu/C) Mediated Efficient Synthesis of 1-Substituted 1H-Tetrazoles under Solvent Free Condition

1-substituted 1H-tetrazoles were efficiently synthesized under solvent-free conditions from the reaction of primary amines, triethylorthoformate, and sodium azide in the presence of Cu/C as a heterogeneous catalyst. Various amines including aromatic and heteroaromatic amines were used to afford the corresponding products in good to excellent yields. The characterization of corresponding product...

متن کامل

Biginelli Multicomponent Condensation Reaction Promoted by 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica Nanocomposite under Solvent Free Conditions

In this paper, 4,4ʹ-bipyridinium dichloride  supported SBA-15 (SBA@BiPy2+ 2Cl-) was used for the synthesis of dihydropyrimidinones. The synthesized catalyst was characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Thermogravimetric analysis (TGA). This nanocomposite was shown to be an efficient heterogeneous ca...

متن کامل

Colorful detection of organic solvents based on responsive organic/inorganic hybrid one-dimensional photonic crystals

Solvent sensitive organic/inorganic hybrid one-dimensional photonic crystals (1DPCs) were prepared through alternating thin films of poly methyl methacrylate-co-hydroxyethyl methacrylate-co-ethylene glycol dimethacrylate (PMMA-co-PHEMA-co-PEGDMA) and titania nanoparticle sol by spincoating. Since the titania layer has a higher refractive index compared with the polymer layer, an obvious photoni...

متن کامل

Nano TiO2@KSF as a high-efficient catalyst for solvent-free synthesis of Biscoumarin derivatives

An efficient, simple and convenient route is described for the synthesis of biscoumarin (3,3'-(arylmethylene) bis (4-hydroxy-2H-chromen-2-one)) by using of recyclable catalyst TiO2@KSF. In this Method, we synthesis biscoumarin derivatives via 3multi-component reactions (3MCRs) of two equivalent 4-hydroxycoumarin with one equivalent of aromatic aldehydes using 20 mg nano TiO2@KSF as homogeneous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 26 22  شماره 

صفحات  -

تاریخ انتشار 2010